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1. Global, local and personalised modelling: 
Problem definition
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• Adaptive modelling of complex dynamic processes

• Incremental learning and improvement 

• Extracting relationship rules, knowledge

• Facilitating discoveries across disciplines – Bioinformatics, Neuroinformatics,  Health informatics, 
Industrial Informatics, Business, Environment 
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Machine learning algorithms

Machine Learning

Supervised Learning

Unsupervised Learning

Batch Learning

Incremental Leaning

Transductive Learning

Inductive Learning

Reinforcement Learning

Competitive Learning

Ensemble Learning

Model-based Tree /
Forest Learning

Evolving Leaning

Other Categories
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Inductive learning framework

 Data  set D  
for training 

Training a 
model M  

New input vector ixr

 
 

Recall M  for 
any new data  

ixr  

Output iy  

• Inductive Learning extrapolates from a given set of examples so that we can make 
accurate predictions about future examples. 

• Given a training set of positive and negative examples of a concept, construct a 
description that will accurately classify whether future examples are positive or 
negative. That is, learn some good estimate of function f given a training set {(x1, 
y1), (x2, y2), ..., (xn, yn)} where each yi is either + (positive) or - (negative). 
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Transductive learning framework

Model M old

A new model
M generated
for the input
vector ixr

New input vector ixr

Data joD , generated from Mold

in the vici nity of the input  vector ixr

Data jD selected from D  in the

vicinity of the input vector ixr Output iyData set D
for training

• Transductive learning is concerned with the estimation of a function in a single 
point of the space only. For every new input vector xi, a new model Mi is 
dynamically created from these samples to approximate the function in the locality 
of point xi

• Compared with inductive learning, transductive learning specially takes both 
labeled data and unlabeled data into account.

• Neuro-fuzzy method for transdictive learning (TWNFI, IEEE TrFS,2004)
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• Find a linear subspace that 
maximises class separability among 
the feature vector projections in the 
data space.

• Popular separability criterion is 
ratio of between-class scatter and 
within-class scatter

• LDA seeks directions efficient for 
discrimination

• Regression analysis

• Linear Discriminant Analysis (LDA)

Global Models  - Statistical Methods
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• The idea of support vector machine is to map the training data into higher dimensional feature space via kernel 
computation, and constructing a separating hyperplane with maximum margin there.

• The type of the kernel function defines the type of the model: global, or local. 

• These kernel functions could be: 
– Polynomial functions

– Radial basis functions

– Linear functions.

Example of a SVM hyperplane
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Support Vector Machines
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NeuCom: A software environment for data analysis, modeling and knowledge 
discovery

• Data analyses, model creation, and  knowledge 
discovery

• Feature extraction (statistical, PCA, clustering, 
SNR, …)

• Model creation, model validation for 
classification, prediction, optimisation, control

• Rule extraction  
• Module and data integration
• Case study data and problems

• Free student version, limited
• Full version (unlimited) – license available for

approx. 1,600Euro

• www.theneucom.com
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2. Local Learning in ECOS

• Creating multiple local models in the problem space, all of them covering the whole space through 
inductive learning. 

• Examples: 
– Local regressions
– ECOS - modular connectionist-based systems that evolve their structure and functionality in  

a continuous, self-organised, on-line, adaptive, interactive way from incoming information; 
they can process both data and knowledge in a supervised and/or unsupervised way.   

• N. Kasabov, Evolving connectionist systems – methods and applications in bio-informatics,  
brain study and intelligent machine, Springer Verlag, 2002

‘Throw the “chemicals” and let the system grow’ Prof. Walter  Freeman, UC at Berkeley.

Environment

ECOS
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Local learning based on clustering of input (or input-output) vectors and learning 
local models 

An evolving clustering process using ECM with consecutive 
examples x1 to x9 in a 2D space (Kasabov and Song, DENFIS, IEEE Tr FS, 2002) 
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Evolving Fuzzy Neural Network (EFuNN)

• Learning is based on clustering in the 
input space and a function estimation for 
this cluster

• Prototype rules represent the clusters and 
the functions associated with them  

• Different types of rules: e.g.  – Zadeh-
Mamdani, or Takagi-Sugeno

• The system grows and shrinks in a 
continuous way

• Feed-forward and feedback connections 
(not shown)

• Fuzzy concepts may be used
• Not limited in number and types of 

inputs, outputs, nodes, connections
• On-line/off line training  
• ECF – evolving classifier function – a 

partial case of EFuNN – no output MF

• N. Kasabov, IEEE Tr SMC, 2001,

Inputs:
not fixed,
fuzzified or not

outputs:
not  fixed,
defuzzified

rule(case)
node layer:
growing
and shrinking
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Gene Expression Data Analysis, Modellling and   Profiling

• Problems: 
– large data bases; 
– data always being 

added and modified; 
– different sources of 

information
• Local models are 

suitable – each cluster is 
represented as a [rule = 
profile]

• Applications for markers 
and drug discoveries

• PEBL 
(www.peblnz.com)
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SIFTWARE – A software systems for gene expression data analysis, 
modelling and profiling

(License available from PEBL, www.peblnz.com)
Case example: DLBCL outcome prediction, data from: M. Ship et al, Nature Medicine, vol.8, n.1, January 2002, 68-74



nkasabov@aut.ac.nz

Dynamic Evolving Neuro-Fuzzy Systems (DENFIS)

• Modeling, prediction  and 
knowledge discovery from 
dynamic time series

• Cluster –based local 
modelling where each 
cluster evolves a model (a 
function) of the same type 

• Kasabov, N., and Song, Q., 
DENFIS: Dynamic Evolving 
Neural-Fuzzy Inference 
System and its Application 
for Time Series Prediction, 
IEEE Transactions on Fuzzy 
Systems, 2002, April
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Local, incremental learning of cluster-based fuzzy rules in DENFIS

• Input vector:  x = [x1,x2, … , xq]
• Result of inference: 

Σ i=1,m [ ωi fi ( x1, x2, …, xq )]
y = __________________________

Σ i=1,m ωi

• A partial case is using linear regression functions: 
y = β0 + β1 x1 + β2 x2 + … + βq xq. 

• Fuzzy rules: IF x  is in cluster Cj THEN  yj = fj (x)

• Incremental learning of the function coefficients through least square error
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Learning and Inference in DENFIS
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The case study on GFR prediction for renal medical decision support

A real data set from a medical institution is used here for experimental 
analysis. The data set has 447 samples, collected at hospitals in New 
Zealand and Australia. Each of the records includes six variables 
(inputs): age, gender, serum creatinine, serum albumin, race and blood 
urea nitrogen concentrations, and one output - the glomerular filtration 
rate value (GFR). All experimental results reported here are based on 
10-cross validation experiments with the same model and parameters 
and the results are averaged. In each experiment 70% of the whole data 
set is randomly selected as training data and another 30% as testing data. 
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Local, adaptive GFR Renal Function Evaluation System based on DENFIS:  GFR-
DENFIS

(Marshal, Song, Ma, McDonell and Kasabov, Kidney International, May 2005)
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3. Data and model integration through local learning and 
modelling

A case study of a model M (formula) and 
a data set D of new data integration 
through an ECOS. 

• Model M: A 3D plot of data D0 (data 
samples denoted as “o” ) generated from 
a model M (formula) y = 5.1x1+0.345x1

2 

– 0.83x1 log10 x2 + 0.45x2 +0.57 exp(x2 
0.2) in the sub-space of the problem space 
defined by x1 and x2 both having values 
between 0 and 0.7,  and 

• New data D (samples denoted as “*”) 
defined by x1 and x2 having values 
between 0.7 and 1;
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After integration through incremental learning in ECOS, the system 

performs better on the new data
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Prototype rules extracted from DENFIS and EFuNN after model and data integration

Takagi-Sugeno fuzzy rules (DENFIS):

• Rule 1: IF x1 is (-0.05, 0.05, 0.14) and x2 is 
(0.15,0.25,0.35) THEN y = 0.01 + 0.7x1 + 0.12x2

• Rule 2: IF x1 is (0.02, 0.11, 0.21) and  x2 is 
(0.45,0.55, 0.65) THEN y = 0.03+ 0.67x1+ 0.09 x2

• Rule 3: IF x1 is (0.07, 0.17, 0.27) and  x2 is 
(0.08,0.18,0.28) THEN y = 0.01 +0.71x1 + 0.11x2

• Rule 4: IF x1is (0.26, 0.36, 0.46) and  x2 is 
(0.44,0.53,0.63) THEN y = 0.03+ 0.68x1+ 0.07x2

• Rule 5: IF x1is (0.35, 0.45, 0.55) and  x2 is 
(0.08,0.18,0.28) THEN y = 0.02 +  0.73x1+ 0.06x2

• Rule 6: IF x1is (0.52, 0.62, 0.72) and x2 is 
(0.45,0.55,0.65) THEN y = -0.21 + 0.95x1 + 0.28x2

• Rule 7: IF x1is (0.60, 0.69,0.79)  and x2 is 
(0.10,0.20,0.30) THEN y = 0.01+ 0.75x1+ 0.03x2

• New rules: 
• Rule 8: IF x1is (0.65,0.75,0.85)  and  x2 is  

(0.70,0.80,0.90) THEN y =-0.22+0.75x1+0.51x2
• Rule 9: IF x1is (0.86,0.95,1.05)  and  x2 is 

(0.71,0.81,0.91)  THEN  y   =0.03 + 0.59x1+0.37x2

Zhade-Mamdani fuzzy rules (ECF, EFuNN):

Rule 1: IF x1 is (Low 0.8) and x2 is (Low 0.8) THEN y is (Low 0.8), radius 
R1=0.24; N1ex= 6
Rule 2: IF x1 is (Low 0.8) and x2 is (Medium 0.7) THEN y is (Small 0.7), 
R2=0.26, N2ex= 9

Rule 3: IF x1 is  (Medium 0.7) and x2 is (Medium 0.6) THEN y is (Medium 
0.6), R3 = 0.17,N3ex=17

Rule 4: IF x1 is (Medium 0.9) and x2 is (Medium 0.7) THEN y is (Medium 
0.9), R4 = 0.08, N4ex=10

Rule 5: IF x1 is (Medium 0.8) and x2 is (Low 0.6) THEN y is (Medium 0.9), 
R5= 0.1, N5ex = 11

Rule 6: IF x1 is (Medium 0.5) and x2 is (Medium 0.7) THEN y is (Medium 
0.7), R6= 0.07,N6ex= 5

New  rules:
Rule 7: IF x1 is (High 0.6) and x2 is (High 0.7) THEN y is (High 0.6), R7 = 
0.2, N7ex = 12

Rule 8: IF x1 is (High 0.8) and x2 is (Medium 0.6) THEN y is (High 0.6), 
R8=0.1,N8ex= 5

Rule 9: IF x1 is (High 0.8) and x2 is (High 0.8) THEN y is (High3 0.8), R9= 
0.1, N9ex = 6
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4. Integration of regression formulas and kernel methods in a 
local learning RK-KBNN 

(Song, Kasabov, Ma, Marshall,  AI in Medicine, December, 2005)

• Cluster-based local learning, 
where each cluster has a different 
shape and a different type of 
model (function) evolved 

• A local function F is selected to 
approximate data in a local 
Gaussian kernel

• Y (xi ) = G1(xi) F1(xi) + 
G2(xi)F2(xi) + … + 

GM(xi) FM(xi)
where:
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Global regression formulas versus local RK-KBNN

(A case study on GFR renal function evaluation)

8.555.076.8617Local RK- KBNN

9.365.397.1832RBF

8.675.277.2434 DENFIS

8.975.467.4336ANFIS

9.065.748.4412MLP

9.275.877.76–MDRD

10.195.587.36–Walser

9.925.627.49–Gates

12.077.8310.29–Bjorasson

12.437.129.50–Hull

10.456.167.97–Cockcroft-Gault

9.665.907.84–Jelliffe73

13.348.0911.01–Mawer

12.427.219.13–Jelliffe71

StdMAERMSENeurons or rules Model
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● – a new data vector
○ – a sample from D
∆ – a sample from M

• A transductive model is created on a 
sub-set of neighbouring data to each 
input vector. A new data vector is 
situated at the centre of such a sub-set 
(here illustrated with two of them – x1
and x2), and is surrounded by a fixed 
number of nearest data samples 
selected from the training data D and 
generated from an existing model M 
(Vapniak)

• The principle is: “ What is good for 
my neigbors will be good for me”

5. Transductive (“Personalised”) Modelling
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Problems of the personalised modelling

• Defining a correct number of neighbours – K. Is “the more – the 
better” principle held here? 

• Defining appropriate number of features (variables) 
• Defining appropriate “personalised” models, e.g. k-NN, MLR, 

MLP, SVM,…
• Defining the distance measure, e.g. Euclidean distance, 

Hamming distance, Cosine distance, etc. 
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Comparative Analysis of Global, Local and Personalised Modelling on the DLBCL 
Gene Expression Case Study
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Transductive Neuro Fuzzy Inference with Weighted Data Normalisation - TWNFI 
(Q.Song and N.Kasabov, IEEE Tr FS, December 2005, and Neural Networks, 2005)
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After the nearest samples are selected for an input 
vector x, the samples are clustered using ECM. 

A fuzzy rule is created/derived for each cluster: 

Rl :If x1 is Fl1 and x2 is Fl2 and … xP is FlP,  then y is Gl ,

where Flj and Gl are fuzzy sets defined by Gaussian   
type membership functions. 

Input variable weights wj and fuzzy rule parameters 
are optimized through the steepest descent algorithm.
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Comparative analysis of Global, Local and Personalised modelling on the case study of 
GFR renal function evaluation

Model Neurons or 
rules

Testing 
RMSE

Testing 
MAE

Weights of input variables
Age        Sex        SCr Surea Race        Salb
w1          w2           w3          w4            w5          w6

MDRD __ 7.74 5.88 1 1 1 1 1 1

MLP 12 8.44 5.75 1 1 1 1 1 1

ANFIS 36 7.49 5.48 1 1 1 1 1 1

DENFIS 27 7.29 5.29 1 1 1 1 1 1

TNFI
6.8 

(average) 7.31 5.30 1 1 1 1 1 1

TWNFI
(patent)

6.8 
(average) 7.11 5.16 0.89 0.71 1 0.92 0.31 0.56
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A GFR exemplar personalised model of a patient obtained with the use of the TWNFI

Input
variables

Age 
58.9      

Sex
Female

SCr
0.28

Surea
28.4

Face
White

Salb
38

Weights of input 
variables (TWNFI) 0.91 0.73 1 0.82 0.52 0.46

Results
GFR (desired)

18.0
MDRD

14.9
TWRBF

16.6
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6. Evolutionary Computation for the Optimisation of Local 
Models

Evolutionary computation. 
Terminology:

• Gene
• Chromosome
• Population
• Crossover
• Mutation
• Fitness function
• Selection
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Genetic Algorithms (GA) 
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GA 

• Many individuals are evolved 
simultaneously on the same data 
through a GA method

• A chromosome represents each 
individual  

• Individuals are evaluated and the 
best one is selected for a further 
development 

• Mutation  
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GA feature and parameter optimisation of local ECOS in NeuCom and SIFTWARE

• Optimizing the parameters of 
the model and the input features

• A chromosome contains as 
“genes” all model parameters 
and input features

• Replication of individual ECOS 
systems and selection of:

- The best one 
- The best m averaged, etc
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GA feature and parameter optimisation of personalised  models
Optimising the number of neighbours K, the distance measure, and the model type

(N.Mohan and N.Kasabov, IJCNN, IEEE Press, 2005)

(a)

(b)
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7. Gene regulatory network (GRN) modeling and 
discovery

• Genes that share similar functions  usually 
show similar  gene expression profiles and 
cluster together    

• Different  clustering techniques:
– Exact clusters  vs fuzzy clusters
– Pre-defined number of clusters or evolving 
– Batch vs on-line
– Using different  similarity or correlation 

measure

• Case study: 
– Leukemia cell line U937 (experiments done at 

the NCI, NIH, Frederick, USA, Dr Dimitrov’s
lab)

– Two different clones of the same cell line 
treated with retinoic Acid

– 12,680 genes  expressed over time points 
– 4 time  points (the MINUS clone, the cell died) 

and 
– 6 time points (PLUS cell line, cancer)
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ECOS for  GRN modeling 
(Kasabov and Dimitrov, ICONIP 2002, IEEE Press, 2002)

G(t)             EFuNN, DENFIS              G(t+dt)

• On-line, incremental learning of GRN

• Adding new inputs/outputs (new genes) 

• The rule nodes capture clusters of input genes that are related to the output  genes 

• Rules can be extracted that explain the relationship between G(t) and G(t+dt),  e.g.: 

• EFUNN rules:

IF g1 (t) is High (0.87)  and g2(t) is Low (0.9) 

THEN g1 (t+dt) is High (0.6) and g4 (t+dt) is Low

• DENFIS rules: 
IF      g1(t)  is (  0.63    0.70    0.76) and  g2 (t)  is (  0.71    0.77    0.84)  and

g3 (t)  is (  0.71    0.77    0.84) and  g4 (t)  is (  0.59    0.66    0.72) 
THEN   g1(t)   =    1.84 - 1.26 X1 - 1.22X2  +  0.58X3 - 0.03 X4
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Using GRN models to predict the expression of genes in a future time
(Zeke Chan, N. Kasabov, I. Sidorov and D.Dimitrov, IEEE Tr CBBI, 2005) .
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Example of a GRN derived from gene expression time course data
(Chan, Collins and Kasabov, JBCB, 2005)
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GNetXP methodology and software
(Chan, Collins and Kasabov, JBCB, 2005)

idx Key Genes in the cluster
1 p57 Kip2
2 CDK1, E2F2; HMG CoA reductase, IPPisomerase, Farnesyl-DFT
3 p27 Kip1; Asparagine synthesase; Squalene epoxidase, Cyp51
4 P18
5 /
6 /
7 HEF1, ATF3 transcription factor
8 Interleukin 1ß, Interleukin 6, ID2, ID3,Interleukin 8, VEGF, Plasminogen activator inhibitor type 1 

and Metallothionein 1ß; VEGF; Plasminogen activator inhibitor; metalloproteinases type 1

9 CyclinB, Cdc28; metalloproteinases
10 CyclinA, CyclinD1 Cdc2, Madp2, Wee1-like protein kinase, TGFβ and CENP-f; c-FOS, JUNB, 

MAPK1; Metallothionein 1A, Flap endonuclease; metalloproteinases 1

Stage 1:
Trajectory
Clustering

Stage 2:
GRN 

extraction
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key genes in each cluster
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The GNetXP software system
(license available from KEDRI, www.kedri.info)
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Computational Neurogenetic Modelling:Computational Neurogenetic Modelling:
GRN within neurons as part of a SNN GRN within neurons as part of a SNN 

((L.BenuskovaL.Benuskova, , S.WysoskiS.Wysoski, , N.KasabovN.Kasabov,, IJCNN05 IJCNN05 –– IEEE Press, 2005, ICANN05IEEE Press, 2005, ICANN05-- LNCS 3697 Springer, 2005LNCS 3697 Springer, 2005

GRNGRN
CNGM as a SNNCNGM as a SNN
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SNN 
Properties

Output 
Analysis

Optimization

Real Data
Analysis

Visualization

CNG Simulator (Licence available from KEDRI, www.kedri.info)
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8. Conclusions and further directions

Advantages of  local and personalised modelling:
More accurate
Better explanation 
Different number of variables can be used

Questions and problems for further research in local and personalised modelling
How many neighbouring data points Dj should be selected in a transductive reasoning 
(personalised modelling)? That is the problem of choosing K
How is “vicinity” measured
Choice of distance function
Transductive feature selection
Speed, when optimisation is needed 

How to combine different models – each of them giving a different perspective, 
i.e global, local and “personalised”?

Computational neurogenetic modelling (CNGM) 
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