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1. Global, local and personalised modelling:
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Adaptive modelling of complex dynamic processes

Incremental learning and improvement

Extracting relationship rules, knowledge

Facilitating discoveries across disciplines — Bioinformatics, Neuroinformatics, Health informatics,
Industrial Informatics, Business, Environment




Machine learning algorithms

Competitive Learning

Unsupervised Learning

Supervised Learning
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Ensemble Learning
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Inductive learning framework

* Inductive Learning extrapolates from a given set of examples so that we can make
accurate predictions about future examples.

« (Given a training set of positive and negative examples of a concept, construct a
description that will accurately classify whether future examples are positive or
negative. That is, learn some good estimate of function f given a training set {(x1,
yl), (x2, y2), ..., (xn, yn)} where each yi is either + (positive) or - (negative).
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Transductive learning framework

* Transductive learning is concerned with the estimation of a function in a single
point of the space only. For every new input vector xi, a new model Mi is
dynamically created from these samples to approximate the function in the locality
of point xi

» Compared with inductive learning, transductive learning specially takes both
labeled data and unlabeled data into account.

* Neuro-fuzzy method for transdictive learning (TWNFI, IEEE TrFS,2004)
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Global Models - Statistical Methods

Linear Discriminant Analysis (LDA)

Find a linear subspace that
maximises class separability among
the feature vector projections in the
data space.

Popular separability criterion is
ratio of between-class scatter and
within-class scatter

LDA seeks directions efficient for
discrimination

Regression analysis
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Support Vector Machines

. The idea of support vector machine is to map the training data into higher dimensional feature space via kernel
computation, and constructing a separating hyperplane with maximum margin there.

. The type of the kernel function defines the type of the model: global, or local.

. These kernel functions could be:
—  Polynomial functions
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NeuCom: A software environment for data analysis, modeling and knowledge
discovery

Data analyses, model creation, and knowledge

discovery

Feature extraction (statistical, PCA, clustering, o
SNR, ...)  or— 48

Model creation, model validation for NeuwComv
classification, prediction, optimisation, control N%WOCOWMM’LQ/DW Support Enviromment
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2. Local Learning in ECOS

* Creating multiple local models in the problem space, all of them covering the whole space through
inductive learning.

« Examples:
— Local regressions

— ECOS - modular connectionist-based systems that evolve their structure and functionality in
a continuous, self-organised, on-line, adaptive, interactive way from incoming information;
they can process both data and knowledge in a supervised and/or unsupervised way.

‘Throw the “chemicals” and let the system grow’ Prof. Walter Freeman, UC at Berkeley.
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Local learning based on clustering of input (or input-output) vectors and learning
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An evolving clustering process using ECM with consecutive
examples x1 to x9 in a 2D space (Kasabov and Song, DENFIS, IEEE Tr FS, 2002)




Evolving Fuzzy Neural Network (EFUNN)

Learning is based on clustering in the
input space and a function estimation for
this cluster

1
Prototype rules represent the clusters and rr‘lloed(gal‘zeir.
the functions associated with them layer:
growing

Different types of rules: e.g. — Zadeh-
Mamdani, or Takagi-Sugeno

The system grows and shrinks in a
continuous way

Feed-forward and feedback connections
(not shown) Inputs:

Fuzzy concepts may be used not fixed,

fuzzified t
Not limited in number and types of uzzilied orno
1nputs outputs, nodes, connections

On-line/off line training

ECF — evolving classifier function — a
partial case of EFuNN — no output MF

and shrinking

outputs:
not fixe
defuzzif

N. Kasabov, IEEE Tr SMC, 2001,




Gene Expression Data Analysis, Modellling and Profiling

* Problems:
— large data bases;

— data always being
added and modified;

— different sources of
information

* Local models are
suitable — each cluster is
represented as a [rule =
profile]

* Applications for markers
and drug discoveries
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SIFTWARE - A software systems for gene expression data analysis,

modelling and profiling

(License available from PEBL, www.peblnz.com)
Case example: DLBCL outcome prediction, data from: M. Ship et al, Nature Medicine, vol.8, n.1, January 2002, 68-74
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Dynamic Evolving Neuro-Fuzzy Systems (DENFIS)

Modeling, prediction and
knowledge discovery from
dynamic time series

Cluster —based local
modelling where each
cluster evolves a model (a
function) of the same type

Kasabov, N., and Song, Q.,
DENFIS: Dynamic Evolving
Neural-Fuzzy Inference
System and its Application
for Time Series Prediction,

IEEE Transactions on Fuzzy
Systems, 2002, April
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Local, incremental learning of cluster-based fuzzy rules in DENFIS

Input vector: x =[x1,x2, ..., xq]

Result of inference:
2 i [Wifi(x1,x2, ..., xq )]

2

1=1,m

wi

A partial case is using linear regression functions:

y=R0+Llx1+L2x2+ ...+ 6qxq.

Fuzzy rules: IF x 1s in cluster C; THEN yj = {j (x)

* Incremental learning of the function coefficients through least square error




Learning and Inference in DENFIS

(a) Fuzzy rule group 1 for a DENFIS

X
7 P )
) 7
B = = K
7
& X2 e 7
X1 - —
7o
~ 1
X1
A B (@
(b)) Fuzzy rule group 2 for a IDENFIS
X2
7
< -
‘ ; 7
= = K
B 77 D
(@ X2 - J
X1 = P -
7 7D
P |
X1




The case study on GFR prediction for renal medical decision support

A real data set from a medical institution is used here for experimental
analysis. The data set has 447 samples, collected at hospitals in New
Zealand and Australia. Each of the records includes six variables
(inputs): age, gender, serum creatinine, serum albumin, race and blood
urea nitrogen concentrations, and one output - the glomerular filtration
rate value (GFR). All experimental results reported here are based on
10-cross validation experiments with the same model and parameters

and the results are averaged. In each experiment 70% of the whole data

set 1s randomly selected as training data and another 30% as testing data.




Local, adaptive GFR Renal Function Evaluation System based on DENFIS: GFR-

DENFIS

(Marshal, Song, Ma, McDonell and Kasabov, Kidney International, May 2005)

J | GFR-ECOS DEMO, Nowv. 2003 , KEDRI , AUT , NZ
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3. Data and model integration through local learning and
modelling

A case study of a model M (formula) and
a data set D of new data integration
through an ECOS.

* Model M: A 3D plot of data D, (data
samples denoted as “0” ) generated from
a model M (formula) y = 5.1x,+0.345x?
—0.83x, log,,x, + 0.45x, +0.57 exp(x,
0.2) in the sub-space of the problem space
defined by x, and x, both having values
between 0 and 0.7, and

* New data D (samples denoted as “*”)
defined by x, and x, having values
between 0.7 and 1;




After integration through incremental learning in ECOS, the system

performs better on the new data




Prototype rules extracted from DENFIS and EFuNN after model and data integration

Takagi-Sugeno fuzzy rules (DENFIS):

Rule 1: IF x, is (-0.05, 0.05, 0.14) and x, is
(0.15,0.25,0.35) THEN y = 0.01 + 0.7x, + 0.12x,

Rule 2: IF x, is (0.02, 0.11, 0.21) and X, is
(0.45,0.55, 0.65) THEN y = 0.03+ 0.67x,+ 0.09
Rule 3: IF x, is (0.07, 0.17, 0.27) and X, is
(0.08,0.18,0.285 THEN y =0.01 +0.71x, + 0.11x,
Rule 4: IF x;s (0.26, 0.36, 0.46) and X, is
(0.44,0.53,0.63) THEN y = 0.03+ 0.68x,+ 0.07x,
Rule 5: IF x,is (0.35, 0.45, 0.55) and x, is
(0.08,0.18,0.28) THEN y = 0.02 + 0.73x,+ 0.06x,
Rule 6: IF x,is (0.52, 0.62, 0.72) and x is
(0.45,0.55,0.65) THEN y =-0.21 + 0.95x, + 0.228x2

Rule 7: IF x;s (0.60, 0.69,0.79) and x, is
(0.10,0.20,0.30) THEN y = 0.01+ 0.75x,+ 0.03x,

New rules:

Rule 8: IF xis (0.65,0.75,0.85) and x, is
(0.70,0.80,0.90) THEN y =-0.22+0.75x,+0.51x,

Rule 9: IF x;is (0.86,0.95,1.05) and x, is
(0.71,0.81,0.91) THEN vy =0.03+0.59x1+0.3’fx2

Zhade-Mamdani fuzzy rules (ECF, EFuNN):

Rule 1: IF x, is (Low 0.8) and x, is (Low 0.8) THEN y is (Low 0.8), radius
R,=0.24; N, =6

Rule 2: IF x, is (Low 0.8) and x, is (Medium 0.7) THEN y is (Small 0.7),
R,=0.26, N, =9

2ex

Rule 3: IF x, is (Medium 0.7) and x, is (Medium 0.6) THEN vy is (Medium
0.6), R, =0.17N, =17

3ex

Rule 4: IF x, is (Medium 0.9) and X, is (Medium 0.7) THEN vy is (Medium
0.9),R,=0.08, N,. =10

4ex

Rule 5: IF x, is (Medium 0.8) and x, is (Low 0.6) THEN y is (Medium 0.9),
R=0.1, Ny, =11

Sex

Rule 6: IF x, is (Medium 0.5) and X, is (Medium 0.7) THEN vy is (Medium
0.7), Rg=0.07,N, .= 5

New rules:
Rule 7: IF x1 is (High 0.6) and x2 is (High 0.7) THEN y is (High 0.6), R, =
0.2,N,, =12

Rule 8: IF x1 is (High 0.8) and x2 is (Medium 0.6) THEN vy is (High 0.6),
Rg=0.1,Ng, =5

Sex

Rule 9: IF x1 is (High 0.8) and x2 is (High 0.8) THEN y is (High3 0.8), R,=
=6

9ex

0.1,N




4. Integration of regression formulas and kernel methods in a
local learning RK-KBNN

(Song, Kasabov, Ma, Marshall, Al in Medicine, December, 2005)

Input Hidden Output
» Cluster-based local learning, layer layer layer
where each cluster has a different ' '
shape and a different type of
model (function) evolved

« A local function F is selected fo
approximate data in a local
Gaussian kernel

e Y(Xxi)= Gl(x) Al(x) +

G2(x)F2(xi) + ... +
GM(x)) FM(xi)
where:
P 2

Gi(x) = a;H exp[ — (xy = my)

j=1

2
2011.
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Global regression formulas versus local RK-KBNN

(A case study on GFR renal function evaluation)

Model Neurons or rules RMSE MAE Std
Jelliffe71 - 9.13 7.21 12.42
Mawer - 11.01 8.09 13.34
Jelliffe73 - 7.84 5.90 9.66
Cockceroft-Gault — 7.97 6.16 10.45
Hull - 9.50 7.12 12.43
Bjorasson — 10.29 7.83 12.07
Gates - 7.49 5.62 9.92
Walser — 7.36 5.58 10.19
MDRD - 7.76 5.87 9.27
MLP 12 8.44 5.74 9.06
ANFIS 36 7.43 5.46 8.97
DENFIS 34 7.24 5.27 8.67
RBF 32 7.18 5.39 9.36

Local RK- KBNN 17 6.86 5.07 8.55




5. Transductive (“Personalised”) Modelling

® — a new data vector
O — a sample from D
A — a sample from M

* A transductive model is created on a
sub-set of neighbouring data to each
input vector. A new data vector 1s
situated at the centre of such a sub-set
(here illustrated with two of them — x;,
and x,), and 1s surrounded by a fixed
number of nearest data samples
selected from the training data D and
generated from an existing model M

(Vapniak)

* The principle is: *“ What is good for
my neigbors will be good for me”




Problems of the personalised modelling

Defining a correct number of neighbours — K. Is “the more — the
better” principle held here?

Defining appropriate number of features (variables)

Defining appropriate “personalised” models, e.g. k-NN, MLR,
MLP, SVM,...

Defining the distance measure, e.g. Euclidean distance,
Hamming distance, Cosine distance, etc.




Comparative Analysis of Global, Local and Personalised Modelling on the DLBCL

Gene Expression Case Study

Model/ Induct Induct Induct Trans Trans Trans Trans Trans Trans Trans Trans
InpVar global Global Local WKNN WKN MLR MLR SV SVM ECF ECF
MLR SVM ECF K=8 K=26 K=8 k=26 M k=26 K=8 k=26
P, =0.5 K=
8
1 var: 73 73 46 50 73 50 73 46 73 61 46
1PI (87,58 (87,58) (0,100) (87,8) (87,56) (87,8) (87,58) (100,0) (87,58 (63,58 (0,100
)
11 var: 79 83 86 74 73 66 78 76 78 78 83
11 genes (91,65 (88,78) (88,84) (91,54 (93,47) (66,65 (81,73 (91,58 (91,62 (81,73 (91,73
12var: 82 86 88 77 76 57 79 77 84 75 77
IPI+ (83,81 (90,81) (83,92) (90,62 (100,50 (60,54 (80,77 (93,58 (93,73 (83,65 (87,65
11g.
Pthr=0.4:
77%
(73,81)
Pthr=45,
82%

(97,65)




Transductive Neuro Fuzzy Inference with Weighted Data Normalisation - TWNFI
(Q.Song and N.Kasabov, IEEE Tr FS, December 2005, and Neural Networks, 2005)

Yes

—

Output yq
calculation

|

End

Input a
vector xg

'

Standard data
normalization

|4

Nearest samples
selection

-

Is the sample set
same as in the
previous iteration

l No
Fuzzy model
creation

Pa rarlieter &

variable weights
optimization

After the nearest samples are selected for an input
vector X, the samples are clustered using ECM.

A fuzzy rule is created/derived for each cluster:
R,:Ifx;isF, and x, isF,, and ... x, is F, thenyis G,

where F; and Gl are fuzzy sets defined by Gaussian
type membership functions.

Input variable weights w, and fuzzy rule parameters
are optimized through the steepest descent algorithm.
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Jomparative analysis of Global, Local and Personalised modelling on the case study ¢
GFR renal function evaluation

Model Neurons or Testing Testing Weights of input variables
rules RMSE MAE Age Sex SCr Surea Race Salb
wl w2 w3 w4 w5 wb6
MDRD o 7.74 5.88 1 1 1 1 1 1
MLP 12 8.44 5.75 1 1 1 1 1 1
ANFIS 36 7.49 5.48 1 1 1 1 1 1
DENFIS 27 7.29 5.29 1 1 1 1 1 1
6.8
TNFI (average) 7.31 5.30 1 1 1 1 1 1
6.8
TWNFI (average) 7.11 5.16 0.89 0.71 1 0.92 0.31 0.56

(patent)




A GFR exemplar personalised model of a patient obtained with the use of the TWNFI

Input
variables

Weights of input
variables (TWNFI)

Results

Age Sex
58.9 Female

0.91 0.73

GFR (desired)
18.0

SCr
0.28

MDRD
14.9

Surea
28.4

0.82

Face Salb
White 38

0.52 0.46

TWRBF
16.6




6. Evolutionary Computation for the Optimisation of Local

Evolutionary computation.
Terminology:

Gene

Chromosome
* Population

Crossover
Mutation

» Fitness function

Selection

Models

parents

HMMMIINY

e

offspring

-:-:-:-:-:-:-:-:-:-:-m




Genetic Algorithms (GA)

1. Initialize population of possible solutions

2. WHILE a criterion for termination is not reached DO
{
2a. Crossover two specimens ("mother and father") and generate new
individuals;
2b. Select the most promising ones, according to a fitness function;
2¢. Development (if at all);
2d. Possible mutation (rare) }




GA

Many individuals are evolved
simultaneously on the same data
through a GA method

Initial
A chromosome represents each population

individual

Individuals are evaluated and the
best one is selected for a further
development

Mutation

crossover




GA feature and parameter optimisation of local ECOS in NeuCom and SIFTWARE

*  Optimizing the parameters of

the model and the input features

* A chromosome contains as
“genes” all model parameters
and input features

* Replication of individual ECOS

systems and selection of:
- The best one
- The best m averaged, etc
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GA feature and parameter optimisation of personalised models

Optimising the number of neighbours K, the distance measure, and the model type
(N.Mohan and N.Kasabov, IJCNN, IEEE Press, 2005)

B
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7. Gene regulatory network (GRN) modeling and
discovery

Genes that share similar functions usually
show similar gene expression profiles and
cluster together

Different clustering techniques:
—  Exact clusters vs fuzzy clusters
—  Pre-defined number of clusters or evolving
—  Batch vs on-line

— Using different similarity or correlation
measure

Case study:

—  Leukemia cell line U937 (experiments done at
the NCI, NIH, Frederick, USA, Dr Dimitrov’s
lab)

—  Two different clones of the same cell line
treated with retinoic Acid

— 12,680 genes expressed over time points

— 4 time points (the MINUS clone, the cell died)
and

— 6 time points (PLUS cell line, cancer)

Expression




ECOS for GRN modeling

(Kasabov and Dimitrov, ICONIP 2002, IEEE Press, 2002)

G(t) EFuNN, DENFIS G(t+dt)

—~

® On-line, incremental learning of GRN

» Adding new inputs/outputs (new genes)
* The rule nodes capture clusters of input genes that are related to the output genes
* Rules can be extracted that explain the relationship between G(t) and G(t+dt), e.g.:
* EFUNN rules:
IF g1 (t) is High (0.87) and g2(t) is Low (0.9)
THEN g1 (t+dt) is High (0.6) and g4 (t+dt) is Low

* DENFIS rules:
IF  glI(t) is( 0.63 0.70 0.76)and g2 (t) is( 0.71 0.77 0.84) and
g3 (t) is( 0.71 0.77 0.84)and g4 (t) is( 0.59 0.66 0.72)
THEN gl(t) = 1.84- 1.26 X1- 1.22X2 + 0.58X3 - 0.03 X4




Using GRN models to predict the expression of genes in a future time
(Zeke Chan, N. Kasabov, 1. Sidorov and D.Dimitrov, IEEE Tr CBBI, 2005) .

plus : 33 8 27 21

© 33
© 3
& 2
-6 21
_Xe /
0 @
o %X-
N 7 ~
7N ~
/X/ X7 N X
/ >
4 /Xff?fx' A N
X x
N
N N\,
NEON x X «
-
X -
Xy N
N x R «
X = R X
X X
N
X \X\
N \><
X
N
X\
e
1 5 | | | | | | | | J




Example of a GRN derived from gene expression time course data
(Chan, Collins and Kasabov, JBCB, 2005)

10g210(expressi0n) The Response of Human Fibroblasts to Serum Data
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GNetXP methodology and software

(Chan, Collins and Kasabov, JBCB, 2005)
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Key Genes in the cluster

p57 Kip2

CDK1, E2F2; HMG CoA reductase, IPPisomerase, Farnesyl-DFT

p27 Kip1; Asparagine synthesase; Squalene epoxidase, Cyp51
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HEF1, ATF3 transcription factor
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Interleukin 18, Interleukin 6, ID2, ID3,Interleukin 8, VEGF, Plasminogen activator inhibitor type 1
and Metallothionein 18; VEGF; Plasminogen activator inhibitor; metalloproteinases type 1

CyclinB, Cdc28; metalloproteinases

Trajectory

CyclinA, CyclinD1 Cdc2, Madp2, Wee1-like protein kinase, TGFf and CENP-f; ¢-FOS, JUNB,
MAPK1; Metallothionein 1A, Flap endonuclease; metalloproteinases 1

Representative trajectories
from the clusters
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The GNetXP software system

(license available from KEDRI, www .kedri.info)
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Computational Neurogenetic Modelling:

GRN within neurons as part of a SNN
(L.Benuskova, S.Wysoski, N.Kasabov, [JCNNOS5 — IEEE Press, 2005, ICANNOS5- LNCS 3697 Springer, 2005

CNGM as a SNN




CNG Simulator (Licence available from KEDRI, www.kedri.info) @ﬁi
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8. Conclusions and further directions

Advantages of local and personalised modelling:
= More accurate
= Better explanation
= Different number of variables can be used

Questions and problems for further research in local and personalised modelling

= How many neighbouring data points D. should be selected in a transductive reasoning
(personalised modelling)? That is the problem of choosing K

= How is “vicinity” measured

= Choice of distance function
Transductive feature selection
Speed, when optimisation is needed

How to combine different models — each of them giving a different perspective,
1.e global, local and “personalised”?

Computational neurogenetic modelling (CNGM)
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