Viewing the Phenomenon of Heterosis as a Network of Interacting

Parallel Aggregation Processes

Elena Tsiporkova & Veselka Boeva

20th September 2005, BioInfo'2005 Workshop, Plovdiv

"Heterosis, or hybrid vigor, refers to the phenomenon that a progeny of diverse inbred varieties exhibit greater biomass, speed of development, and fertility than the better of the two parents."

J.A. Birchler *et al.* (2003) *In Search of the Molecular Basis of Heterosis.* The Plant Cell, Vol. 15, 2236-2239.

Biomass Heterosis in Arabidopsis thaliana

Reproduced with permission from Marnik Vuylsteke.

Heterosis is of great commercial importance since it enables the breeder to generate a product with preserved values which in turn, allows the farmer to grow uniform plants expressing these heterosis features.

Genomes and Genes

Genes are certain regions in the DNA molecule of the organism.

The **genome** is the totality of the genetic information of an organism.

DNA: the physical carrier of the genetic information.

The Genome of Arabidopsis thaliana

Small genome (114.5 Mb/125 Mb total, 5 chromosomes) has been sequenced in the year 2000.

Genotype and Phenotype

A **chromosome** is a very long, continuous piece of DNA, contained in the cell's nucleus.

The **karyotype** is the collection of chromosomes.

The **genotype** is the totality of the genetic information of an organism. The **phenotype** is the expression of organism's genotype.

Diploid Organisms

Genomes can be present in one or more copies per cell.

Two copies of the genome are found in the **diploid organisms**.

Molecular Models of Heterosis

- 1. <u>Additive-Dominance Model</u>: heterosis in F1 is due to increased number of loci of the genome where the heterozygote state is superior than any of the parental homozygote states.
- 2. <u>Epistatic Model</u>: heterosis in F1 is due to complex interaction between different genes on different loci of the genome.

Additive versus Dominance Effects

 p_1, p_2 : phenotypic values of the parents f_1 : phenotypic values of the hybrid

Single Gene Model Additive effect: $a = |\mathbf{p}_1 - \mathbf{p}_2| / 2$ Dominance effect: $d = \mathbf{f}_1 - (\mathbf{p}_1 + \mathbf{p}_2) / 2$ Potence ratio: hp = d / aHeterosis: hp > 1

Additivity: hp = 0Partial dominance: -1 < hp < 0 or 0 < hp < 1Complete dominance: hp = -1 or hp = 1Over-dominance: hp < -1 or hp > 1

Additive versus Dominance Effects

Multiple Gene Model

Net additive effect: $a = \mathbf{r}_a \cdot \sum_{i=1,m} a_i$ Net dominance effect: $d = \sum_{i=1,m} d_i$

 a_i : additive effect of gene *i*

 d_i : dominance effect of gene *i*

 $\mathbf{r}_{\mathbf{a}}$: coefficient of gene association-dispersion

Coefficient of Gene Association-Dispersion

$$\mathbf{r}_{\mathbf{a}} = \mathbf{1} - 2\Sigma_{j \in J} a_j / \Sigma_j a_j$$

J: the set of genes with dispersed alleles between the parents

Heterosis Potential

Net Potence Ratio

$$hp \cdot r_a = \sum_{i=1,m} \lambda_i \cdot hp_i$$

$$hp_i = d_i / a_i$$
: heterosis potential of gene *i*
 $\lambda_i = a_i / \sum_{i=1,m} a_i$: relative additive effect of gene *i*
 $\sum_{i=1,m} \lambda_i = 1$

Net Potence Ratio and Heterosis

$$\begin{split} \min_{i=1,m} hp_i &\leq hp \cdot \mathbf{r}_a \leq \max_{i=1,m} hp_i \\ \text{If } \Sigma_{i=1,m} \lambda_i \cdot hp_i &> \mathbf{r}_a \text{ then } \underline{\text{heterosis}} \\ \text{If } \underline{\text{heterosis}} \text{ then } \max_{i=1,m} hp_i &> \mathbf{r}_a . \end{split}$$

Heterosis and Coefficient of Association-Dispersion

If heterosis then:

- in case of *complete association* there must exist at least one positively *over-dominant gene*;
- otherwise, in *all other cases*, at least one gene exhibiting positive *partial-dominance* must be present.

Heterosis as a Network of Interacting Parallel Aggregation Processes

genes = interacting agents

 $\alpha_i = [\alpha_{i1}, \alpha_{i2}, ..., \alpha_{im}]$: interaction coefficients for agent i $\sum_k \alpha_{ik} = 1$

- α_{ik} : the relative degree of influence agent k accepts from agent i
- α_{ii} : the relative degree of self-influence of agent *i* in the interaction

Interacting Parallel Aggregation Processes

Parallel Aggregation Processes in Terms of Matrix Operations

Initialization $A = [\alpha_1^{\mathrm{T}}, \alpha_2^{\mathrm{T}}, ..., \alpha_m^{\mathrm{T}}] = \begin{pmatrix} \alpha_{11} & \alpha_{12} & ... & \alpha_{1m} \\ \alpha_{21} & \alpha_{22} & ... & \alpha_{2m} \\ \end{pmatrix}$: interaction matrix $hp^0 = [hp_1, hp_2, ..., hp_m]^T$: vector of initial heterosis potentials $\left[\alpha_{m1} \alpha_{m2} \ldots \alpha_{mm} \right]$ Recursion For $k = 1, 2, ..., hp^k = A^T hp^{k-1}$: vector of heterosis potentials at step k. **Convergence** Guaranteed for all $\alpha_{ii} > 0$. After q steps $hp^{q} = A^{T} hp_{m}^{q-1} = A^{T} \dots A^{T} hp^{0} = (A^{q})^{T} hp^{0}$ and $hp_{1}^{q} \approx \dots \approx hp_{m}^{q}$

