SEARCH AND RETRIEVAL IN DISTRIBUTED DATABASES
Martin Tsenov, Krasimir Trichkov
Department Hierarchical Systems, Institute of Computer and Communication
Bulgarian Academy of Sciences, Acad. G. Bonchev str. bl.2, 1113 Sofia, Bulgaria

mcenov@hsi.iccs.bas.bg, krasi@hsi.iccs.bas.bg

Abstract - This paper aims to present a Z39.50 protocol for distributed searching and SOAP protocol for data exchange in library applications. It specifies Z39.50 client and Z39.50 server behavior for search and retrieval across online library catalogues. In order to make all databases accessible from a single interface, they are all connected to the Internet through Z39.50/SOAP architecture. The paper examines the potential of the proposed model to enable new methods of data creation and exchange in library networks.

Keywords – Databases, Distributed Databases, Protocol, Search and Retrieval.

INTRODUCTION

The use of data exchange on the World Wide Web is expanding rapidly as the need for application-to-application communication and interoperability grows. These services provide a standard means of network communication between different software applications involved in presenting dynamic context-driven information to the user. In order to promote interoperability and extensibility among these applications, as well as to allow them to be combined in order to perform more complex operations, data exchange standard architecture is needed. In this paper the author describes a set of requirements for data exchange method architecture for Web services.

A lot of activities in today’s dynamic world concern effective information exchange. A large amount of information in an organization leads to the need of making possible to extract the necessary data and to access them everywhere and any time. To facilitate information retrieval across the diverse collections of data resources now available, a non-proprietary standards-based communications protocol for distributed searching which is independent of database and computer environment. Z39.50 is a mature standard, widely implemented in the library community. It is beginning to solve real problems, not just for libraries, but also for other collecting agencies such as art galleries, museums and archives. And like the dynamic network environment in which it is used, the standard is evolving to meet the changing needs of information creators, providers, and users.

DESCRIPTION OF THE PROTOCOLS

Z39.50 protocol

Z39.50 or ISO23950 is a protocol enabling search of and retrieval from remote databases. Its full name is ANSI Z39.50-1995, Information Retrieval (Z39.50) Application Service Definition and Protocol Specification [1]. The standard defines specifications for protocols (rules and procedures) to promote communication between different systems. Z39.50 is one of many NISO standards that address the application of both traditional and new technologies to information management, retrieval, and storage. The goal in developing and using technical standards in information services, libraries, and publishing is to make information systems easier to use and less expensive to operate. Z39.50 is a computer-to-computer communications protocol designed to support searching and retrieval of information (full-text documents, bibliographic data, images, multimedia) in a distributed network environment. Based on client/server architecture and operating over the Internet, the Z39.50 protocol is supporting an increasing number of applications. Z39.50 supports open systems, which means it is nonproprietary, or vendor independent. Also next generation Z39.50 protocol called SRW (Search and Retrieve Web Service), building on Z39.50 along with web technologies, recognizes the importance of Z39.50 (as currently defined and deployed) is available for business communication now. In this way can be developed so called network of e-services [2]. The body responsible for Z39.50 is ANSI/NISO [3].
SOAP protocol
SOAP (Simple Object Access Protocol) [4] is a simple, lightweight protocol for structured and strong-type information exchange in a decentralized, distributed environment.

Similar to object distribution models (IIOP, DCOM...), SOAP can call methods, services, components and objects on remote servers. However, unlike these protocols, which use binary formats for the calls, SOAP uses text format (Unicode), with the help of XML to structure the nature of the exchanges.

SOAP can generally operate with numerous protocols (FTP, SMTP, POP...), but it is particularly well suited to the HTTP protocol. It defines a reduced set of parameters, which are specified in the HTTP header, making it easier to pass through proxies and firewalls.

SOAP protocol is based on XML (eXtensible Markup Language) and consists of three parts:

1. An envelope which describes the contents of the message and how to use it

2. A set of rules for serializing data exchanged between applications

3. A procedure to represent remote procedure calls, that is, the way in which queries and the resulting responses to the procedure are represented.

Deploying SOAP over HTTP makes it possible to use the SOAP decentralization method in the well-used environment of HTTP. Using SOAP over HTTP also enables resources already present on the Web to be unified by using the natural request/response mode of HTTP. The only constraint is that a SOAP message via HTTP must use the MIME type "text/xml".
ABSTRACT MODEL OF Z39.50/SOAP ARCHITECTURE

The core functions of Z39.50 relate to searching and retrieving information from databases stored on multiple host sites. The protocol “specifies data structures and interchange rules that allow a client machine (called an ‘origin’ in the standard) to search databases on a server machine (called a ‘target’ in the standard) and retrieve records that are identified as a result of such a search [5].

The protocol confines itself to interactions between the client and server machines, and does not address interaction between a human user and the client machine or between the target machine and its databases. The standard is designed to facilitate interoperability between computer systems. The communication described in the standard is connection-oriented and stateful: that is, the origin initiates a session with the target and the connection is maintained until the association is terminated.
In an implementation, the origin and target convert their local forms of messages and responses to and from Z39.50 ‘language’. This means an origin can maintain a consistent user interface for searching targets, which support Z39.50; because the client machine’s searching syntax can be mapped into Z39.50 queries. In this way, the origin extends the local interface to search external targets. On the target or server side, this requires considerable conversion because the incoming Z39.50 query must be mapped to retrieval mechanisms and vice versa.

Web-based search and retrieval applications need Z39.50 for the same reason as proprietary applications - to avoid the proliferation of interfaces to the target databases. The Web is a static collection of html documents stored on HTTP Servers. Special programs using scripting languages and compiled modules are needed to deliver search and retrieval functionality. In server-based implementations, the HTTP/ Z39.50 gateway resides on an HTTP server. Browser-based implementations also exist which require Java or Active X applets to be downloaded to the user's machine.
As databases differ considerably in structure and indexing methods, the protocol employs a common, abstract model for describing databases. The model requires a "schema" or abstract record structure to be defined for each database, composed of "elements" such as author, title, and date last modified. Access points are also defined for each searchable element or group of elements. However, Z39.50 should not be interpreted as a database-indexing standard. In each implementation, the target databases must be mapped to the Z39.50 database model to enable communication between origin and target.

For data exchange between databases is used SOAP protocol. SOAP messages are structured using XML. Within the framework of the remote procedure call (RPC), it represents the parameters of the methods, the return values and any potential error messages linked to the processes.

Coding SOAP messages in XML [2] enables universal communication between applications, services and platforms via the Internet. In order to do this, SOAP makes use of the descriptive nature of the XML language, thus transforming the content into an application.

In more technical terms, just as with an XML fragment, SOAP messages make references to different namespaces, enabling the content to be validated. They must therefore include a call to SOAP namespaces, making it possible to define and specify the use of standard tags in the message and to ensure compatibility between SOAP versions. As soon as a SOAP message is received, the SOAP tags are validated, as are the tags that express the subject of the message. If it fails, an error is generated (http://www.w3.org/TR/SOAP/).

Soap thus defines two namespaces:

http://schemas.xmlsoap.org/soap/envelope/ for the envelope

http://schemas.xmlsoap.org/soap/encoding/ for the coding

 Figure 1 shows abstract model of Z39.50/SOAP client/server architecture [6].

Fig.1 Common client/server architecture
Networked information retrieval requires:

· Identifying a target to search

· A vocabulary for expressing search requests, search criteria, retrieval requests, etc.

· Methods to encode the requests and responses from the target

· Methods to transport the requests and responses across a network

A search request can be made to one or more databases at a target system and must contain a query. The group of records retrieved as the result of a query is called a result set. When a database is searched, the client passes a query to the server. The query contains search terms (e.g., terms that the user has identified to be matched against access points in the database) and attributes of those search terms (e.g., specifying the terms as an "author" or "title," specifying if the terms are to be "truncated," etc.). Queries can include different attribute types. For example, if a user wants to search for an author's name, a "use" attribute specifies the search term as "author." If the user wants to search for all books published after a certain date, a "use" attribute specifies the search term is a "date of publication" and a "relation" attribute specifies that the user wants all dates of publication "greater than" a particular date. ANSI/NISO Z39.50 [1] enumerates these attribute types and their values in registered attribute sets. Standardized and mutually recognized attribute sets allow implementers a common basis for intersystem communication. After the server executes a search of a database, it creates a result set consisting of those records that match the criteria of the query. Clients can request that servers return those records from a result set, or they can issue additional searches that further qualify a result set or use result sets as arguments in subsequent searches [7].

PHYSICAL IMPLEMENTATION and results
For the data exchange over SOAP protocol (Fig.1) the authors proposed decision based on the following steps:

- The calling application makes a procedure call on the XML-RPC client indicating the URI of the server, the procedure to be called on the server, and the parameters to be sent to that procedure.

- The XML-RPC client takes the method and parameters and builds an XML container for them; the XML container is the sent over HTTP as a POST request.

- XML-RPC server that receives the POST requests parses that XML container and determines the method to be called and the parameters to this method.

- The method is executed on the server and returns a result.

- The result is packaged as XML and the server returns the XML result container as the response of the POST request.

- The client parses the XML response container and returns the result to the calling application.
- The application processes the result.

Physical implementation of this Z39.50/SOAP architecture is based on common client/server architecture (Figure 1). It is available on HTTP Server www3.iccs.bas.bg and use also same address for Z39.50 Server (Zebra Server).

Software components

Zebra - Zebra [8] is a fielded free-text indexing and retrieval engine with a Z39.50 fronted. Zebra is a high-performance, general-purpose structured text indexing and retrieval engine. It reads structured records in a variety of input formats (eg. email, XML, MARC. Zebra supports large databases (more than ten gigabytes of data, tens of millions of records). It supports incremental, safe database updates on live systems.

ZAP - ZAP [8] is a module (to Web servers), which allows you to build simple WWW interfaces to Z39.50 servers. ZAP hides most of the complexity of session management, parallel searching. The integration of system into the popular Web servers offers several advantages to the operators and users of the software, including simplified maintenance of the Module, and improved performance.
PHP/PHP_YAZ – [9, 10] This extension offers a PHP interface to the YAZ toolkit that implements the Z39.50 protocol for Information Retrieval. With this extension its easily to implement a Z39.50 origin (client) that searches or scans Z39.50 targets (servers) in parallel.

This is free software that can work on various operating systems and various Web Servers.

Database record

Next table (table 1) shows www3.iccs.bas.bg Zebra Server record:
Table 1. Zebra Server record
	<gils><Title>State</Title>

<Author>Nadejda Miteva</Author>

<Creator>K.Stoilova, K.Trichkov</Creator>

<purpose>$ 90</purpose>

<URL>Tempera</URL>

<Description>State,2000</Description>

<Publisher>ICCS</Publisher>

<Contribution>UBA</Contribution>

<Date>2001.10.29</Date>

<Type>Image</Type><Format>jpeg</Format>

<Identifier>0095</Identifier>

<Record-source>http://www3.iccs.bas.bg/

RecordsUBA/nad_miteva.jpg</Record-source>

<Language>en</Language>

<Relation>http://www3.iccs.bas.bg/RecordsUBA/

nad_miteva.jpg</Relation>

<Coverage>Contemporary Bulgarian

 Art</Coverage><Rights>UBA</Rights>

<Text>Nadejda Miteva,State, 2000</Text>

<DateofLastModifiction>2001.11.06</DateofLastModification>

<Source>Nadejda Miteva
nad_miteva.jpgSofia, 1950
State, 2000
Tempera,

Price: $ 90Dimension 374x 524pixels,

resolution 72 pixels/inch</Source>

<xml><name>State</name><item_id>94</item_id>

<description>State, 2000</description

><producer>Nadejda Miteva</producer>

<price>$ 90</price

<host_ref>http://www3.iccs.bas.bg/RecordsUBA/

nad_miteva.jpg</host_ref></xml></gils>

Zebra Search Request/Response

Table 2 defines www3.iccs.bas.bg Zebra Server Request/Response model:

Table 2. Zebra Server Request/Response model

	H:\Program Files\Zebra\test\gils>H:\Progra~1\

Zebra\bin\zebraidx -t grs.sgml update records
15:47:30-23/12: [log][app2] zebra_start zebra.cfg

15:47:30-23/12: [log][app2] zebra_register_open

rw = 1 useshadow=0 p=00514990,n= ,rp=(none)

15:47:30-23/12: [log][app2] updating records

15:47:30-23/12: [log] dir records

15:47:34-23/12: [log] add grs.sgml records/e0.txt

15:47:34-23/12: [log] add grs.sgml records/e1.txt

……………………………………………………

15:47:38-23/12: [log] zebra_end_trans

15:47:38-23/12: [log] sorting section 1

15:47:38-23/12: [log] writing section 1

15:47:38-23/12: [log] finished section 1

15:47:39-23/12: [log] Iterations . . . 2331

15:47:39-23/12: [log] Distinct words . 704

15:47:39-23/12: [log] Updates. 0

15:47:39-23/12: [log] Insertions . . . 704

15:47:39-23/12: [log][app2]

zebra_register_close p=00514990

15:47:39-23/12: [log] Records: 121 i/u/d 121/0/0

15:47:39-23/12: [log] Starting server zebrasrv

15:47:39-23/12: [log] Adding dynamic Z3950

 listener on tcp:@:9999

15:47:39-23/12: [log] Entering event loop.

15:48:30-23/12: [log] Got initRequest

15:48:30-23/12: [log] Id: YAZ (id=81)

15:48:30-23/12: [log] Name: PHP/YAZ

15:48:30-23/12: [log] Version: 1.6

15:48:30-23/12: [log] Negotiated to v3: srch prst

extendedServices namedresultsscan sort

15:48:30-23/12: [log] Got SearchRequest.

15:48:30-23/12: [log] Database 'Default'

15:48:30-23/12: [log] RPN query. Type: Bib-1

15:48:30-23/12: [log] term 'wood' (general)

15:48:30-23/12: [log] ResultSet 'default'

15:48:30-23/12: [log][app2] zebra_register_open

rw = 0 useshadow=0 p=0051C5A8,n= ,rp=(none)

15:48:31-23/12: [log] dict_lookup_grep: (wood)

15:48:31-23/12: [log] resultSetRank

15:48:31-23/12: [log] term="wood" nn=0

type=void count=0

15:48:31-23/12: [log] 0 keys, 0 distinct sysnos

15:48:31-23/12: [log] resultCount: 0

15:48:31-23/12: [log] Connection closed by client

15:48:31-23/12: [log][app2]

zebra_register_close p=0051C5A8

PHP_YAZ module for Search and Retrieval
PHP source code for Search and Retrieval using PHP_YAZ library:

mysql_connect($host,$user,$userpass) or die("Connect failed");

 if(mysql_select_db($base)==FALSE)

 { mysql_create_db($base) or die("DataBase '$base' select failed
"); }

 $query="select url from targets";

 $result=mysql_query($query) or die("Error in query"); $i=0;

 while ($row=mysql_fetch_row($result))

 { $hosts[$i]=$row[0]; $i++; }

 $num=count($hosts); $fb="";

 for ($i=0; $i<$num; $i++)

 { $id[$i] = yaz_connect($hosts[$i]);

 yaz_syntax($id[$i],"xml");

 yaz_range($id[$i],$starting,$hit); if ($fb=="full")

 yaz_element ($id[$i], "f");

 else yaz_element ($id[$i], "f");
 $string=split(" ",$term); if (isset($string[1]))

 { $term1="@or ".$term; } else {

$term1=$term; }

 yaz_search($id[$i],"rpn",$term1);

 yaz_wait(); $error = yaz_error($id[$i]);

 if (!empty($error)) {

 echo "
$hosts[$i] - Error: $eror";

 } else { $hits=yaz_hits($id[$i]);

 $hitsumm+=$hits;

 echo "
$hosts[$i] - Result Count: $hits"; } }
SOAP module for data exchange

SOAP declaration:

$payload[]="HTTP/1.0 200 OK\r\n";

$payload[]="Status: 200\r\n";

$payload[]="Server: SOAPx4 Server v0.5\r\n";

$payload[]="Connection: Close\r\n";

$payload[]="Content-Type: \

 text/xml;charset=UTF-8\r\n";

$payload[]="Content-Length:

 ".strlen($xml_query)."\r\n\r\n";

…… //data request

function send ($soap_data,$path,$server)

{ global $outgoing_payload; $incoming_payload='';

 $action='urn:soapBI'; $port='80';

$fp=fsockopen($server,$port,$errno,$errstr,3);

$outgoing_payload =

 "POST ".$path."HTTP/1.0\r\n".

 "User-Agent: SOAPx4 v0.5\r\n".

 "Host: ".$server."\r\n".

 "Content-Type:text/xml\r\nContent-Length:

 ".strlen($soap_data)."\r\n"."SOAPAction:

 \"$action\""."\r\n\r\n". $soap_data;

 // send
…… // data response

 while($data = fread($fp, 32768))

 { $incoming_payload .= $data; } fclose($fp);

 $incoming_payload = $incoming_payload;

 return $incoming_payload;
CONCLUSIONS AND FUTURE WORK

The essence and functional possibilities on communication architecture Z39.50/SOAP was presented. Definite are special futures of the protocol and its application for information search in distributed databases. Definitely are software components of the protocol. Proposed the real decision for works with heterogeneous databases (architecture for searching in distributed databases) using Z39.50 protocol (Zebra server and PHP_YAZ module). The architecture is platform and software independent. As a future work is the problem for optimization of developed searching services.

REFERENCES

[1] http://www.ansi.org
[2] Stoilov T. and K.Stoilov (2003). Network of e-services. Proceedings of the International Conference on Computer Systems and Technologies, COMPSYSTECH’2003, Sofia, Bulgaria, p.IIIA16.1-IIIA16.6

[3] http://www.niso.org

[4] http://www.w3.org/TR/SOAP/

[5] http://sunsite.anu.edu.au
[6] Trichkov Kr. Search and Retrieval Web Services in the Web Information Systems. Proceedings of the International Conference “Automatics and Informatics’04”, Bulgaria, Sofia, October, 6-8, 2004, p.5-8
[7] Ivanova E. (2003). Application of Distributed Search in Databases for Web Services, International conference ICEST’03, p.291-294

[8] http://www.indexdata.dk
[9] http://www.php.net
[10] C. Scollo, J. Castagnetto, D eliath, H. Rawat, S. Schumann, Professional PHP Programming, Wrox, December 1999
Database

Server Side

Client Side

g

a

t

e

w

a

y

Result Set

HTTP server

(Web server)

ZAP/PHP

Z39.50-WWW

Server

Z39.50

HTTP client

(Web browser)

Client

Z39.50

		

HTTP

Query/

Retrieval Records

Search

Database

Records

			

				

Z39.50

SOAP

